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NUMERICAL ANALYSIS OF SPATIAL STRUCTURE OF
COHERENT OPTICAL WAVE FIELDS

A. V. KoBrysHEv, E. V. KUrRMYSHEV and 1. N. SISAKYAN

Abstract—Computer programs developed for numerical evaluation of the Kirchhoff integral for the case
of planar optical elements of arbitrary shape were thoroughly tested. The spatial distribution of diffracted
wave fields was investigated as a function of shape of planar optical elements and Gaussian inhomogeneities
in the irradiance of the illuminating beam. For the axially symmetric problem, analytical representations
of the diffraction integral were obtained in the Fraunhofer and Fresnel approximations as a series in
Bessel functions. These representations proved to be convenient in studying the asymptotic effect of
inhomogeneities in the intensity of the incident beam. The wave field structure was investigated in the
neighbourhood of a geometrical optics parabola, a point focus, and an axial segment with uniform
distribution of irradiance.

1. INTRODUCTION

To design planar optical elements one relies on solving the direct problem of wave theory, i.e. the
evaluation of the distribution of the wave field in a certain region of space when given the distribution
of the field and/or its derivatives at the boundary of this region. The computer programs and
algorithms to solve this problem may be viewed as building blocks of a computer-assisted system
of planar optics design [1, 2].

For the inverse problem of field focusing into a specified region of space so as to achieve a
desired distribution of intensity, three methods of solution have been elicited [3,4]. The first
method, widely accepted and well-developed mathematically, relies upon the geometrical optics
approximation [3, 5, 6]. The second approach takes diffraction effects into account and reduces to
a minimization problem for the respective functionals of a residual, and is usually handled by
iterative techniques [3, 4]. The third method of focuser synthesis boils down to solving a nonlinear
[7] or linear integral equation which relates the distribution of the phase or the field at the focuser
to the desired distribution of intensity in the focal plane.

Solution of the direct diffraction problem is then a necessary means of verifying and refining the
solutions of the inverse ill-posed problem. Direct verification of an inverse solution is especially
desirable when it is difficult or even impossible to prove the convergence of the algorithm, the
uniqueness of the solution, or the very existence of a solution when handling a certain class of
functions. These difficulties, among increasing demands for corrector plates and focusers of coherent
wave fields, and their strict design specifications have motivated the development of efficient
programs that provide a detailed investigation in the spatial structure of the wave fields formed
by these optical elements wherever diffraction effects are involved [17].

In this work we used familiar computational algorithms [8] to develop programs computing the
two-dimensional Kirchhoff integral for the case of planar focusers of arbitrary shape. These programs
were subjected to a detailed testing to reveal the domain of the applicability. The structure of the
wave field was obtained in the vicinity of the geometrical optics parabola, a focal point, and an
axial section at a place of uniform intensity. The spatial distribution of wave fields was studied as
a function of the shape of planar optical elements with allowance for Gaussian inhomogeneities of
illumination.

2. MATHEMATICAL PROBLEM STATEMENT (KIRCHHOFF INTEGRAL)

This section sets out the direct problem [9, 10], thus providing a basis for subsequent discussion.
Suppose that the propagation of a monochromatic wave in a homogeneous isotropic medium is
described by the wave function U(P, t) = U(P) exp(iwt) which satisfies the wave equation and the
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Fig. 1. Geometry of the problem.

complex wave field U(P) satisfies the Helmholtz equation
AU + k*U =0, (1)

where k = 27/ is the wavenumber, and P(x, y, z) is a point with coordinates x, y, z in physical space.

Let the optical element occupying a domain in the plane z=0 (Fig. 1) be illuminated by a
wave U(&,1,0—0). This element transforms this wave into another wave U(&, 7,04 0)=
G(&, nU(E, n,0—0), where G(&, ) is the complex transmittance of the planar element. If (G| =1
this is a purely phase element, if Im G = 0 this is a purely amplitude element, and in the general
case one may consider amplitude-phase elements with an arbitrary complex function G(&, ). Notice
that the polarization effects are not included here. The field behind the element, in the z>0
half-space, is given by the solution of the appropriate boundary problem for Eq. (1). For the first
boundary problem (field at the boundary is given), the solution to Eq. (1) may be represented with
the aid of the Green function [9, 10] as
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where S, is the plane z =0, r> = (x — £)® + (y — n)* + 22, it is assumed that kr > 1, and @(&, )=
U(,n,0+0)for M(E, n)eZ.

It is worth noting that high accuracy is required in the treatment of the boundary conditions
when in (2) one changes the integration from over the whole of plane S; to that over domain X.
This is especially true in formulating the inverse problem when the field at the boundary is evaluated
from the distribution in a particular space. Indeed, an actual amplitude-phase element has finite
dimensions and may be fitted into an opaque screen, or illuminated by an unconfined beam, or
be a combination of these situations. Then, the transition in (2) from the integration domain S,
to ¥ implies in mathematical terms that a field (M) is given such that ¢(M)= U(M, 0+ 0) for
MeX and (M) =0 for MeS,\X. These are the approximate Kirchhoff boundary conditions for
the first boundary value problem.

When the element is mounted in an opaque screen, this implies that in Eq. (2) the contribution
of the field U(MeS,;\X,0+0) beyond the boundary is neglected, i.e. the field U(M,0+0) is
assumed to fall off rapidly outside the screen. For the inverse problem this implies that fields
UM, 0 + 0) with infinite carrier wave are allowed as solutions provided that these fields rapidly
decay outside the focuser. If the element is illuminated by an unconfined beam, the approximate
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Kirchhoff boundary conditions allow the solution of the first boundary value problem accurate to
the contribution of the field UM e S;\ X, 0 + 0) only.
Two approximations of the Kirchhoff integral are in wide use [9]. In the Fresnel approximation,

H 2 2 2 2

u(p) = 228 eXp<i7t X+ ) j f @n) exp(in St ) exp[—i2n(fE + fyn)]dedn, ()
Az Az 5 Az

where f, = x/(Az), and f, =y/2z.

K a is the radius or characteristic dimension of the aperture, then the region of Fresnel diffraction
corresponds to the wave parameter D = Az/na? being close to unity, and |x — &/« 1, |y —n|« 1,
r~z+0.5[(x — &)? + (y — n)*]; while the region of Fraunhofer diffraction is consistent with D> 1,
exp[in(£2 +n?)/Az] ~ 1 and the field is given as

ikz 2 2
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Solutions (3) and (4) possess an obvious reciprocity defined by the correspondence of the aperture
function @ — & = @ exp[in(&? + 5?)/Az].

In this work the Kirchhoff integral was computed by Gaussian quadrature, Simpson’s rule, and
the trapezium rule written in FORTRAN. A comparison of the results of preliminary computations
and an assessment of the numerical evaluation in Lesson et al. [11] led to our choosing the
computational scheme for the Kirchhoff integral (2) over an arbitrary plane area X (unless indicated
otherwise, all the following results were determined by Simpson’s rule [8] on a VAX-type computer).
Incidentally, it may be noted that even in the axially symmetric problem we did not resort to any
relevant simplifications, such as addition in rings, and we used a single computational scheme
suitable for an arbitrary plane area throughout the whole study.

3. EXAMPLES OF KIRCHHOFF INTEGRAL EVALUATION

3.1. Diffraction of a plane wave at circular and elliptical apertures

In the Fraunhofer approximation, a uniform plane wave U = A¢e** (4 =const., Im 4 =0),
diffracted by a circular aperture of radius a is described by Eq. (4) at ¢(&, ) = 4. This integral is
amenable to an easy analytic calculation and the distribution of intensity of the diffracted wave in
the observation plane z =z, is given by the familiar expression [9, 12]

2J1(kaR/z)>2
kaR/z ]’

where 1(0, z) = (4/D)? is the intensity along the z-axis, the wave parameter D = 1z/(ra)* > 1, 4 is
the operating wavelength, and R? = x? + y2.

The numerical integration by Eq. (2) with ¢(&,7)=A4, a=10"?m, A=0.6328 x 10"°m and
2=5x 10* m (which corresponds to D ~ 10) produced a result that agrees with that of Eq. (5)
accurate to the 4th decimal place, using a mesh of only 64 x 64 nodes. The time to compute the
field at one observation point was 3.6 s.

Changing the coordinates in the aperture plane z=0 as ' =u, £ and ' = u, ¢ (u, and p, are
real-valued constants) maps the aperture T into Z'. In the Fraunhofer approximation, Eq. (4)
readily yields a congruence relation for the diffraction of a plane wave at apertures X and X' [12].
For the intensity of the diffracted waves, this congruence is written as

I(R,z)=|U(R, z)]* = 1(0, z)( (5)

I(x, y,2) = ppu,) 2I'(x', ¥, 2'), (6)

where x" = x/u, and y' = y/u,. In other words, the intensity I’ of a plane wave diffracted by a hole
as measured at a point (x', ¥, 2') is (pep,)* (X', 1,y', z). Equation (6) was used as one of the
checking relations for the program computing the integral (2).

The distribution of field intensity was also computed for a plane wave diffracted at elliptical
apertures &'2/u2 +n'2/u? = a* with a semi-axis ratio of u,/u, =1, 1.01 and 1.5. For simplicity of
comparison it was required that u u, =1, while the values of a, A and z were kept the same as for
the circular aperture case. The results of calculations at the corresponding points were found to
be in full agreement with Eq. (6).



42 A. V. KOBYSHEV et al.

3.2. The focal spot

Let us investigate the diffraction of a converging spherical wave at circular and elliptic apertures.
The spherical wave converges to the focal point P(0, 0, z,) at the z-axis. In the aperture plane its
amplitude-phase distribution is

o(&, )= Aexp(—iky/23+ E +n?)/ /22 + E + 1P
~ (A/zo) exp[ —kzo(L + (€% + n?)/223)], 0

where z,, is the focal length of the lens, 4 is a real valued constant, and it is assumed that if the
characteristic linear dimension of the aperture is a, then a/z, « 1.

The numerical evaluation of the Kirchhoff integral (2) with the aperture function (7) was carried
out for a number of elliptical apertures {Y;: £2/u2; + n*/u,;=a?; ij =1, 2, 3}. For each value of g;
from the set (a,, a,, a;)=0.5mm, 1 mm and 1.5 mm, the semi-axis ratio y; = u,;/u,; took on all
values from the set (u;, i,, #3) = (1, 1.01, 1.5). For simplicity of comparison of the results it was
always required that u;u ;= 1, that is, the areas §; = =4na? of apertures ZU were independent of
u;. Some computations on the mesh of 128 x 128 nodes are summarized in the tables and figures
of this paper. We note that the time to compute the integral (2) at each point of observation
amounted to about 14 s.

Figure 2 shows the relative intensity distributions Ix,y,z0) =1, 1%, ¥, 20)/1, 0, 0, z,) of the light
field in the focal plane z = z,, along the axes z and y (for the circular aperture of u, =1, the
distribution is axially symmetric).

For a circular aperture (u, = 1), the first minimum T, 1 (R} 1 min» Zo) = 8 x 10™* is achieved at the
circle of radius Ry, =8 x 107> m (1274). For an elliptical aperture with u, = 1.01, the first
minimum T} ,(X 2 0, Zo) = 4 x 107 * of the intensity distribution along the x-axis is achieved at
X12min = +7.5 x 1075 m (~1184), while the distribution along the y-axis attains its first minimum
11500, ¥iamin» Z0) = 5.9 x 107 % at y,, = +8.5 x 107 °> m (~1332).

For a weakly elliptic aperture of By = 1.01, the maximum deviation of the distributions T} ,(x, 0, z)
and T,,(0, y, z,) from the function T, (R, z,) nowhere exceeds a value of about ~10~ 3 therefore
the plots of these distributions practically coincide in Fig. 2.

For an elliptic aperture with p; = 1.5 we get T30 3mim 05 20) = 1.8 X 10 3 for Xy 3mn =~ +6x 1073 m
(2952), and T,5(0, ¥13mimr 20) = 1.6 x 1073 for y;smn> +9 x 107> m (=1432); these data are
summarized in Table 1(a, b).

The plots in Fig. 2 reveal that the intensity distributions extend along the y-axis and contract
along the x-axis according as the aperture circle contracts in the y-axis and extends along the
x-axis when the circle is deformed into the ellipses. This fact obviously agrees with the similarity
relation (6), which is not obeyed strictly in this particular case, however.

Figure 3 shows the relative intensity distributions T,.j(O, 0, Az) = 1,50, 0, Az)/1,0, 0, z,) along the
z-axis near the focus z,, so that Az =z — z,. Notice the shift of the maxima I, (0,0, Az ,,,) from
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Fig. 2. Spherical wave. Distribution of intensity in the focal plane:a; = S mm, g, = 1,4, =1.01, 3 = 1.5.
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Table 1(a). X;;min top rows, and y;; i, (X 1075 m)

Hy Ha H3
. 8 (1274) 7.5 (1184) 6 (951)
. 8 (1274) 8.5 (1334) 9 (1432)
a 3.8 (604) 3.8 (602) 3.2 (502)
3.8 (602) 3.8 (604) 438 (751)
a 1.9 (304) 1.9 (304) 1.6 (252)
1.9 (304) 1.9 (304) 2.4 (384)
Table 1(b). Tj(xy;.min 0» Zo), top rows, and T10, vy min» Z0)
Hy [ H3
8x107* 4x107% 1.8 x 1073
. 8x 1074 594 x 1074 1.6x1073
1.6x 1074 7.7x 1073 14 x 107*
“ 1.6 x 1074 27x107* 1.5x107*
1.68 x 10™+ 7.9%10°% 1.4 x10°*
“ 1.68 x 10™# 2.8 x 1074 1.5x 1074
10
9
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Fig. 3. Spherical wave. Distribution of intensity on the z-axis. a, =5mm, u; =1, u, = 1.01, u; = 1.5.

the focal plane z = z, toward the aperture (Table 2). The strength and position of the first minima
ahead of the focal plane z =z, and behind it are summarized in Table 3(a, b). These data reveal
an appreciable asymmetry about the focal plane of the intensity distribution along the z-axis. This
result can be demonstrated analytically for the case of the integral (4) with (¢, ) given by Eq.
(7), although a contrary statement may be found for example in Born and Wolf [12].

In view of the qualitative similarity of the results obtained for the aforementioned values of g;
we do not present the plots for Izj(x y,z) and I, i(X, ¥, z), but summarize the characterlstlc
parameters of the distributions for all a; and y; (i,j=1, 2, 3) in Tables 1-3. Table 1(a) gives the
POSItions X; jm;, and i, of the first minima in the distributions T, (x,0,z)and I, (0, , zo) respectively
along the x- and y-axes. The intensities at these minima, I, (X jmin» 0, Z0) and I,J(O Vijmin> Zo)> are
presented in Table 1(b). In Table 1, the upper rows correspond to the distribution along the x-axis,
and the lower rows along the y-axis. Table 2 shows the positions of maxima, Az;jnay, in the
distributions T;4(0, 0, Az). Table 3(a) gives the positions of first minima, Az{;;}, and Az{};),, in the
intensity distribution T, 1(0 0, Az) along the z-axis in the vicinity of the focus z = z,,. The respective
intensities of these minima are summarized in Table 3(b). The upper values in each cell of Table
3 correspond to positions ahead of the focal plane, the lower rows to positions behind the focus.
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Table 2. A/z;j pmay (M)

Hy H2 Ha
a, —6x 1074 (9524) —8 x 107* (1264) —5.1 x 1072 (80574)
a, —5x 1075 (82) —6x 1073 (954) —3x 1073 (472)
a —-3x 1075 (52) —3x 1076 (54) —2x 1075 (314)

Table 3(a). Az{j ), top rows, and Az{j}.. (m)

Hy Ha Ha
—5x1072 —~5x1072 —6.5x 1072
o 5.5x1072 5.5x%1072 7.5 %1072
—1.2x1072 —13x1072 —1.7x1072
o 1.2 x 1072 1.3x 1072 1.8x1072
a ~32x10"3 ~-32x1073 —44x1073
32x1073 32x1073 44x1073

Table 3(b). 10,0, Az{]),,), top rows, and [;;(0, 0, Az{}’ ),
My b2 Ha

a 1.5x10°3 1.58 x 1073 5x1073

' 7x107* 73%x1073 37x1073

a 44x1073 1.5x1073 41x1073

1.8x1072 1.8x 1073 46x1073

56x107% 56x 1073 43x 1073

a3 2x107* 2x 1074 43x1073

It is worth noting that for a given y; an increase in g; leads to a concentration of the focal spot
in all the axes, and there is evidence of a trend towards restored symmetry about the focal plane
zZ= Zo.

3.3. A plane inhomogeneous wave with a Gaussian distribution of amplitude

In applications, light beams often exhibit inhomogeneous distributions of intensity either for
generic reasons (single mode lasing, for example) or due to random stationary distortions of the
field. It is essential therefore to estimate and take into account the errors introduced by field
inhomogeneities of the incident wave in the focusing by elements designed for plane homogeneous
waves. This section will now take as a model problem the effect of a Gaussian amplitude
inhomogeneity on the diffraction of a plane wave by a circular aperture.

In the Fresnel approximation (3), the intensity of a plane wave with Gaussian amplitude
inhomogeneity, ¢(&, n) = A exp[ — (£2 + n*)/b?], diffracted at a circular aperture, is described by
the integral

- 1 u
I =f pJo(vp)exr)<—5p2> dp, ®)
0

where

u(R, z) = —i2(A/D) exp(ikz) exp (ikR*/2z)I(u, v),
v=kaR/a=2R/DA,
u=2a?/b*—iD™1),
a is the aperture radius,
b is the real valued parameter of the Gaussian distribution,
D = Jz/na® is the wave parameter, and
Jo is the Bessel function of order zero.
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Integration by parts using the familiar equations for Bessel functions leads us to two equivalent
representations of the integral (8) as series in powers of the ratio (v/u) or (u/v) with the Bessel
functions as coefficients, viz.

Tw, v)=v-1exp(—§> s <g)"Jn+1(v), ©)

=0
Tu,v)=u" 1{exp(—vz/Zu) —exp(—u/2) i (—2>n.l,,(v)}. (10)
n=1 u

The expressions (9) and (10) are useful analytical estimators of the obtained field (8) as it depends
on the behaviour of the inhomogeneity parameter (a/b) and parameter D. They are Neumann’s
series [13] and may be demonstrated to possess infinite radii of convergence, i.e. converge at any

values of u and v.
Given the values of D and a/b, Eqs (9) or (10) readily yield the field (8) on the axis (R — 0) as

lim T(u, v) =u~'[1 —exp(—u/2)]. (11)

R—-0
According to Eq. (8) the field intensity is given by
I(R, z)=u(R, z)|?
= (A/Dy*4|T(u, v)|*. (12)

For a diffracted quasi-homogeneous wave, the intensity at the axis results from (11) and (12) as
limyy p)~ 0 limg ., o T(u, v), namely,

1,(0, z) = (A/D)*4D? sin?(1/2D). (13)

In the Fraunhofer approximation of D> 1, Eq. (13) gives the known value I,(0, z) = (A/D)?.

The effect of nonuniformity a/b on the field intensity on the axis may be readily estimated by
Eq. (11) in the Fraunhofer approximation

10, 2)lp» 1 = (4/D)*(a*/b*)™*[1 — exp(—a?/b*)]?
= (4/DY?, for a/b«1, (14)
= (A/D)*(a?/b*)"2 « (A/D)?, for a/b»1.

This expression suggests that for given parameters 4 and D an increasing inhomogeneity a/b
entails a monotonous fall of field intensity on the axis, which might be associated with the drop
of the energy integral { |o(&, n)|> d& dn for the incident beam.

For an appreciable nonuniformity a/b> 1, a given value of parameter D (which corresponds to

large values of variable u), and moderate values of v, the Bessel functions in (10) may be developed
in the variable to get

I(u, v)=u"[1 —exp(—u/2)] exp(—v?/2u).

Consequently, like in the near field (D ~ 1), for the far field case of D> 1 and a/b» 1, Eq. (12)
yields an exponential intensity distribution in R, viz.

AN*(a?\"? 2R?
win=(G) () o) "

which coincides with Eq. (14) at R=0.
For a weak inhomogeneity a/b <1 and not very small D 2 1, retaining the leading term in 9)
we have v

T(u, v) = exp(—u/2)v™ 1, (v) + O(w™2J,(v) exp(—a?/b?)). (16)
It should be emphasized that the remainder
O(lulv™J,(v)-exp(—a?/b?)) ~ exp(—a?/b*)2[ (a®/b*)* + D~2] 112

will be sufficiently small even at a/b ~ 1 because the growth of |u| with an increase of inhomogeneity
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a/b is outbalanced by the fail of exp (—a?/ b?). Consequently, the functional form (16) of the integral
T(u, v) = exp(—u/2)v™*J,(v) will be valid not only for D> 1 and a/b « 1 but also for the relaxed
conditions D = 1 and a/b < 1. The field in this case is defined by the expression

I(R, z) = (A/D)? exp(—2a?/b*)[ 20~ J, (v)]*. 17

We give,one more way to derive the expressions (15)-(17) for the Fraunhofer approximation of
D » 1. In this case, given a weak inhomogeneity a/b « 1 the integral (8) takes the form

1
T(u, v)=T(0,v) = J pJo(vp)dp = v~ 1J,(v)
0
that corresponds to the formula (17).
For D> 1 and a strong inhomogeneity, a/b 2 1, the upper limit of integration in (8) may be
extended to infinity and we arrive at the expression

- 1 a?
I= J pJo(vp) exp(——b—2 p2> dp
4]

0 a2
~ f pJo(vp) exr>< -— pz) dp
0 b

_1(a2/b2)-—lex (_ DZ )
2 P\ " 2207
corresponding to Eq. (15).

The computations of the Kirchhoff integral (2) for various cases of a plane inhomogeneous wave
o(&, 1) = A exp[ — (6 + n?)/b?] diffracted by a circular aperture of radius a are plotted in Fig.
4(a,b). These results agree completely with the conclusions of the preceding analysis. Indeed, for
D =10 (Fig. 4a) and for D=1 (Fig. 4b), the radial intensity plots are well described, up to
nonuniformities (a/b); <1, by the dependence I/I,~4v™%J 2(p) corresponding to the plane
homogeneous wave. The first minimum is located by the zero 3.832 ~ v, =2R/Da of the Bessel
function J,(v). Increasing the inhomogeneity a/b 2 1 of the incident beam causes the dependence
(17) to reduce monotonously to Eq. (15). Note in passing that for the situations under study, the
computation program yielded, in a stable manner, two or three side maxima (minima) of the
intensity distribution.

An analysis of the Gaussian amplitude inhomogeneity for the particular case of D > 1 for a plane
inhomogeneous wave diffracted by a circular aperture may be also found in Klimov [16]. This
author has obtained a field expansion of the type of Eq. (9), but in another form. For the case in
question, Klimov’s conclusions agree with those drawn in this section.

3.4. Wave pattern of the field in geometrical optical focusing into a parabola, point and axial segment

Substantial advances in the synthesis of optical elements are to a considerable extent associated
with the use of geometrical optics [1,3-6, 14, 15]. However, when the effects of diffraction are
taken into account, it is necessary to invoke wave theory to describe operation of optical elements.
In this section we resort to the formal Kirchhoff integral (2) to perform a numerical analysis of
the wave pattern formed by planar phase elements with the aperture functions ¢(¢, 1) obtained by
solving the inverse problem in the approximation of geometrical optics.

For a planar optical element of radius a=12.8 x 10”3 m and focal length f=3x10"'m
operating at A= 1.06 x 10~ >m and focusing, in the geometrical optics approximation, a plane
wave into the segment of parabola y=x?/2R, xe[—d,d], with 2d=6 x 107>m and R=
5x 10”2 m in the focal plane z = f, the aperture function @(¢,n) was computed by formulae
borrowed from Danilov et al. [14]. The results of the computation of the integral (2) with this
aperture function ¢(¢, n) conducted on a mesh of 512 x 512 nodes are plotted in Figs 5 and 6. The
points are normalized with respect to the intensity 1(0, 0, /).

Figure 5 shows the distribution of intensity in the x-axis of the focal plane z=f, symmetric
about x =0.

It is interesting to analyse the structure of irradiance in the neighbourhood of the geometric
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Fig. 4. Radial distributions of relative intensity I(R, z)/1(0,z): a=10mm, A=6328 nm. (a) D =10,
(a/b);=0.1,1,2,10fori=1,2,3,4. (b) D=1, (a/b);=0.1, 1, 10for i=1, 2, 3.
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Fig. 5. Focusing into a parabola. Distribution of relative intensity on the x-axis.

parabola y = x?/2R. Figure 6 presents the computation of the field in the focal plane z = f as the
distributions of relative intensity along the y-axis for five values of x, namely, 0, 1, 2, 2.5 and 3 mm.
The maxima of these plots are displaced from the true geometric values y; = x?/2R, respectively,
by Ayo=0, Ay, ~1.12x 107°m (~1), Ay, ~7.54 x 10 °m (~74), y3=5.41 x 1073 m (=54),
Ay,~7.96 x 107 m (~84), where each Ay, =y —y,.

The wave width of the parabola, controlled by the spacing between the first minima in the

€0 2:1-D
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Fig. 6. Focusing into a parabola. Distribution of relative intensity along the axis Ay,(4) in the plane z = f at
{x}=1{0,1,2,2.5 and 3} mm.

distributions shown in Fig. 6, varies from 2.54 x 10”4 m (~244) at x,=0 to 1346 x 10 *m
(~1274) at x, = 3 x 10~ 3 m. The intensity maxima in the distributions in Fig. 6 reduce appreciably
near the ends of the parabolae at the above x;, namely, max I(x,, y) =1, max I(x,, y) ~0.921,
max I(x,, y) =~ 0.579, max T(x5,y)~0.274, and max T(x,, y) ~0.04. Consequently, the focusing
weakens towards the ends of the parabola. This manifests itself in the reduction of maximum
intensity and in blurring the focal spot.

The energy integral “ I(x, y, f)dxdy taken over the neighbourhood of the parabola amounts
to 84% of the energy of the plane wave incident on the phase element of area 4ra?.

The calculation of intensity 1(0, 0, Az) along the z-axis near z = f indicates that the depth of the
parabola, i.e. the spacing between the first minima of the z distribution, amounts to about
3.6 x 10”2 m, and that the intensity maximum is shifted by Azy,, = Zpay — f =3 x 107* m (=304)
toward the optical element.

Following Danilov et al. [14] we let R - oo and d - 0 to transform the focal parabola into a
point, thus computing the phase function (¢, #) of the planar optical element that focuses, in the
approximation of geometrical optics, a plane wave into a focal point. This phase function was used
in computing the integral (2) at a mesh of 128 x 128 nodes and the same wavelength and focal
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Fig. 7. Intensity distribution of the field in the vicinity of the focal point: (a) on the z-axis, (b) at radius R().

length as for the focusing into the parabola. This integral provides insight into the structure of the
field in the neighbourhood of the focal point P(0, 0, f).

The maximum of the relative intensity distribution in the z-axis shown in Fig. 7(a) is shifted
towards the phase element by Az,,, =z_,,— f = —3 x 1074 m (~304), while the first minima are
at the points Az{™)~ 11 x 1073 m and Az‘*’~ 12 x 10~ 3 m, fore and aft of the geometric optical
focus. This z distribution is asymmetric both about the focal plane z = f and about z,,. In the
radial distribution in the focal plane shown in Fig. 7(b), the intensity maximum lies inside the
circle of radius R,;, ~ 144.

Vasin et al. [15] have obtained the transmittance of a phase optical element that focuses, in the
geometrical optical approximation, a plane wave into an axial line segment with a uniform
distribution of intensity. This transmittance function is

(@, &)=c 'In[—2¢\/p* + (f + cp?)? + 2c%p* + 1 + 2fc], (18)

where p? = &2 + 2, f is the focal length, ¢ = k/a?, a is the radius of the focuser, and the line segment
x is taken negative if the target zone is ahead of the focus, and positive if behind the focus. For
the values of 1=0.6328 x 107 ®m, f=3x10"'m, a=128%x10"2m, and k= —1.5x10"2m
borrowed from the paper of Vasin et al. [15], we performed the numerical evaluation of the integral
(2) with the aperture function (18) to study the wave structure of the field near the axial line
segment. The computations were run at two meshes of 256 x 256 and 128 x 128 nodes. The results
differ insignificantly, and the subsequent data will be given as those obtained with the former mesh.
Figure 8 shows the z distribution of the relative intensity I(0, Az) = I(0, Az)/I(0, 0) along the
optical axis normalized to the intensity I(0, 0) at the focal point (Az =z — f). The deviations in
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Fig. 8. Focusing into a straight line. Relative intensity variation along the z-axis (dimensions in mm).

the intensity maxima with respect to the level of the uniform distribution

0

I,=x"! J 1(0, z)dz ~ 3.66
-1.5

were as high as 36%.

Figure 9 plots the radial distributions of the relative intensity I(R, Az) = I(R, Az)/1(0, 0) in the
planes perpendicular to the z-axis and located at Az= —15, —10, —5 and 0 mm (labeled by 1-4,
respectively). The wave width, defined as the radius at which the field decays substantially, amounts
in the respective sections to Rjmn=0.7 x 107*m, Rypia=19x107*m, and Ry > Rypin =
1.4 x 10~* m. The irradiance computed in each of the sections at Az, (k=1,2,3,4) from 0 to the
radius R, = 10"%m as
R

E(Az) =2 f I(R, Az)RdR

o
and normalized to the irradiance of the plane wave incident on the focuser is as follows:
E(Az,)~0.15, E(Az,) ~0.41, E(Az;) =0.51, and E(Az,)=0.2.

This evidence indicates that an optical element with transmittance function (18) focuses a plane
wave into an axial line segment exhibiting a considerably nonuniform irradiance along the z-axis
and noticeable deviations in the R distributions of the field from one cross-section to the next. The
radial and z distributions of irradiance represented in Figs 8 and 9 exhibit a qualitative similarity
but differ quantitatively from the data of Vasin et al. [15]. This discrepancy may be attributed to
an approximate procedure when evaluating the Kirchhoff integral as an expansion in Lommel’s
functions used in the paper of Vasin et al. [15].

4. CONCLUSION

A computer program has been developed on the basis of Simpson’s rule for evaluating the
two-dimensional Kirchhoff integral. An in-depth testing of this program is reported for a wide
range of values of the wave parameter and planar optical elements of arbitrary shape. A converging
spherical wave diffracted at circular and elliptical apertures produces irradiance patterns asymmetric
about the focal plane and about the maximum of the z distribution. This asymmetry tends to
decrease for larger apertures. The analytical and numerical analyses of a plane inhomogeneous
wave with a Gaussian amplitude inhomogeneity diffracted by a circular aperture indicate that the
effect of this inhomogeneity is insignificant in the range 0 < a/b < 1 of the inhomogeneity parameter.
This conclusion may be expected to hold, to a certain degree, for elliptical apertures (with the
semimajor axis taken for a) and displaced aperture centres and the Gaussian amplitude distribution.

An investigation of the wave structure of the field in the neighbourhood of the geometrical optics
parabola, point and axial line segment vividly demonstrates that computer-based synthesis of planar
optical elements, in many a situation of practical significance, calls for an essentially wave-theoretical
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Fig. 9. Focusing into a straight line. Radial distributions of relative intensity at {Az;}=
{—15,10,5 and 0} mm.

approach or a step-by-step study of the diffraction effects in solving the inverse problems of optics

in

1
2

3.
4,

12.
13.

the approximation of geometrical optics.
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